Fuzzy-Input Fuzzy-Output One-Against-All Support Vector Machines

نویسندگان

  • Christian Thiel
  • Stefan Scherer
  • Friedhelm Schwenker
چکیده

We present a novel approach for Fuzzy-Input Fuzzy-Output classification. One-Against-All Support Vector Machines are adapted to deal with the fuzzy memberships encoded in fuzzy labels, and to also give fuzzy classification answers. The mathematical background for the modifications is given. In a benchmark application, the recognition of emotions in human speech, the accuracy of our F-SVM approach is clearly superior to that of fuzzy MLP and fuzzy K-NN architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Correcting Output Codes vs. Fuzzy Support Vector Machines

Error correcting output codes (ECOC) have been proposed to enhance generalization ability of classifiers. If, instead of discrete error functions, continuous error functions are used, unclassifiable regions of multiclass support vector machines are resolved. In this paper, we discuss minimum operations as well as average operations for error functions of support vector machines and show the equ...

متن کامل

Analysis of Multiclass Support Vector Machines

Since support vector machines for pattern classification are based on two-class classification problems, unclassifiable regions exist when extended to problems with more than two classes. In our previous work, to solve this problem, we developed fuzzy support vector machines for one-against-all and pairwise classifications, introducing membership functions. In this paper, for one-against-all cl...

متن کامل

Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification

Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification Stefan Scherer a,c,∗, John Kane b, Christer Gobl b, Friedhelm Schwenker c a University of Southern California, Institute for Creative Technologies, 90094 Playa Vista, CA, United States b Trinity College Dublin, Phonetics and Speech Laboratory, School of Linguistic, Speech and Communication Sci...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Fuzzy one-class support vector machines

In one-class classification, the problem is to distinguish one class of data from the rest of the feature space. It is important in many applications where one of the classes is characterized well, while no measurements are available for the other class. Schölkopf et al. first introduced a method of adapting the support vector machine (SVM) methodology to the one-class classification problem, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007